H-矩阵相关论文
非奇异H-矩阵作为一类常见且非常重要的特殊矩阵,其相关理论被广泛应用于计算数学、控制论、电力系统理论、神经网络以及智能科学......
线性系统的求解在数学、物理学、统计学、工程学甚至社会科学中的很多问题求解时都占有重要的地位.比如物理中的线性偏微分方程的......
随着无线通信技术的飞速发展以及国防信息化建设的日益推进,电磁仿真分析对民用、军用领域中各类产品设计的指导意义愈加明显。电......
H-矩阵是一类重要的矩阵,其在量子力学、控制论和生物工程中具有广泛应用.本学位论文研究H-矩阵的三类子类矩阵,即几何加权不可约......
N-矩阵是H-矩阵的重要子类之一,在数值计算、物理、电力控制理论和工程数学等许多方面都有着重要的应用.本文研究N-矩阵的逆矩阵的......
线性互补问题LCP(M,q)在经济学、金融和线性规划等领域有广泛的应用,其解的存在性、唯一性、灵敏度以及求解算法的收敛性都与矩阵M......
近几十年来,随着不断提高的工程电磁场应用需求,追求高效且精确的数值分析方法成为计算电磁学领域一直以来的重点研究工作。时域有......
本论文对时域有限元(FETD)方法中的高阶基函数(1.5阶基函数和2.5阶基函数)做了一系列的研究。
时域有限元中传统的矢量基函数......
本文研究了逆M-矩阵的性质和完成,并且讨论了有关逆M-矩阵Hadamard积的封闭性,不可约逆M-矩阵的广义Perron补,H-矩阵的Fan积不等......
本文针对M-矩阵提出了两种迭代算法。矩阵的对角优势和M-矩阵(及H-矩阵)在数值分析、动态系统的稳定性理论等方面有着非常重要......
随着现代科学技术的迅猛发展,新的数学理论日趋成熟,新的数学方法层出不穷,在解决科技生产中的重大实际问题中愈亦显示出它勃勃生机.......
在本论文中,我们主要讨论了结构矩阵的并行算法.首先,建立中心对称矩阵和中心Hermitian矩阵的矩阵乘积的并行算法;其次,对于中心对称M-......
自Drazin逆的定义被提出后,其应用就非常广泛。如:奇异微分差分方程;Markov链;迭代法;数值分析。特别地,这种广义逆矩阵在奇异线性常微分......
H-矩阵是数学科学和工程应用中的一类特殊矩阵,它在计算数学、控制论、数学物理、经济数学等众多领域中都有着重要的作用和意义。近......
本文主要有两方面的结果.一方面是在一定条件下,通过寻找矩阵特征值与对角元距离的下界来估计特征值的分布;另一方面是给出了两个判......
在对自然科学和社会科学中许多实际问题进行数值模拟时,人们最终将这些问题归结为求解一个或一些大型稀疏矩阵线性方程组,比如在结构......
学位
在自然科学和工程计算等众多领域中,常常会遇到微分方程初、边值问题,然而只有很少一部分十分简单的微分方程能够求得其解析解.对于......
对于求解线性方程组。Ax=b,x,b∈Rn,其中A∈Rn×n是大型的稀疏矩阵,1985年OLeary和White提出并行多重分裂迭代解法[1]。此后,该迭......
块Toeplitz矩阵在信号处理等工程问题中有着广泛的应用,其理论与结构算法被广为研究。解Toeplitz方程组分为直接法与迭代法,在本文......
近年来,矩阵理论在统计学,经济学,工程技术等领域中得到了广泛应用.H-矩阵和广义H-矩阵,作为特殊矩阵类,在数值代数和矩阵分析中具......
在特征不是2的正交空间中,相关文献给出了Witt定理.华罗庚把它推广到体上的一些内积空间.把域上内积空间中的Witt定理推广到奇异内......
将H-矩阵理论应用到传递函数对角优势化过程中,同时结合定量反馈频率自动整形原理,进行可重复使用亚轨道飞行器的多变量控制系统频......
期刊
H-矩阵在许多领域中都发挥着重要作用,但在实用中要判别H-矩阵却是很困难的.本文中,我们获得了H-矩阵判别的新的实用充分条件,所得......
本文指出一文的主要结果中的许多条件是多余的,我们用比较简捷的方法改进了该文的结果,并给出了一些新的H-矩阵的判定方法.......
近年来.许多预条件子被运用于线性系统.讨论了新的多参数一般下三角预条件子的AOR迭代法的收敛性.当线性系统的系数矩阵为H-矩阵时.得......
基于正定矩阵的几个定义,首先给出了广义正定矩阵的一些新性质,其次研究了广义正定矩阵与H-矩阵、M-矩阵的关系,推广和改进了文献......
给出了一个具有一般上三角形式预条件子作用下的SOR型迭代法,比较了此迭代法与经典SOR迭代法的收敛速度,从而更好地说明选取一般上......
给出了与H-矩阵相关的两个等价性定理.定理之一陈述了Schur补与原矩阵之间的一个等价条件.另一定理描述了对角元为正的对称的H-矩阵......
基于矩阵的非精确分裂和多重分裂、处理器的并行计算和松弛迭代算法,提出了求解线性互补问题的非精确松弛多分裂算法,当问题的系数矩......
利用广义α-对角占优矩阵,给出了H-矩阵的几个充分条件,深化和改进了以前的一些结果.最后,用数值例子表明该文方法的优势.......
本文针对文献[1]中的H-矩阵迭代判定算法,提出了适用于此算法的稀疏矩阵的存储结构,并用C语言实现了基于该存储结构的稀疏—矩阵判......
给出了解线性方程组Ax=b的一个新的预条件因子P.应用Gauss—Seidel迭代格式于预条件线性方程组PAx=Pb,并证明了当矩阵A为H-矩阵时,此......
将文后参考文献[1]和[2]中的预条件因子P^和P^α应用于L-矩阵和H-矩阵的AOR迭代法,讨论了其收敛性,给出了收敛条件,比较了预条件效......
循环矩阵和H-矩阵的研究都是当前矩阵理论和应用研究的热点,根据循环矩阵和H-矩阵的定义,给出了逆H-循环矩阵的定义,并在此基础上推导......
研究了几类弱严格对角占优矩阵与H-矩阵的关系;重点分析了对角占优矩阵的内部结构,给出了几个H-矩阵的判定定理。......
李耀堂和李继成[Journal of Compurational Mathematics,19(4)(2001)365-370]给出两个H-矩阵乘积的行列式的下界估计,应用我们所得......
给出了Nekrasov矩阵逆的1范数上界,并在此基础上获得了Nekrasov矩阵的最小奇异值的一个下界.将结果应用到H矩阵,结果表明,新的估计......
考虑矩阵的多重分裂与处理器的并行计算,提出了求解线性互补问题的多分裂多松弛参数迭代算法,利用M-矩阵和H-矩阵的性质及松弛迭代......
针对线性互补问题的求解问题提出了一个快速有效的算法——非对称加速超松弛迭代法.分析了该迭代算法良好的收敛性.给出数值算例.......
首先得到了2个M-矩阵Hadamard乘积、Fan乘积的新的Schur-Oppenheim型不等式,作为应用以统一的方法改进了已有的关于两个H-矩阵的Ha......
H-矩阵是一类用途比较广泛的矩阵,为了解决H-矩阵线性系统,给出了两类新的不同预条件AOR迭代法,得到了这两类预条件AOR迭代法的收......
1997年,Kohno等人对一类非奇异对角占优Z-矩阵的Gauss-Seidel迭代法作出了改进,这种方法被称为IMGS方法.本文考虑对一类应用更广泛......
利用预条件技术考虑了解线性方程组Ax=b的块预条件AOR迭代法.当系数矩阵A是H-矩阵时,给出了该方法的收敛性.从理论上证明了当A是M-矩......
随着H-矩阵在科学与工程计算中的广泛应用,如何判定一个给定矩阵是否为H-矩阵引起了许多研究者的兴趣.本文对一个现有判定H-矩阵的......
1 引言广义M-矩阵和广义H-矩阵的理论在许多实际问题的研究中有着非常重要的作用,如欧拉方程数值求解中出现的线性系统的块迭代法的......